7: Statically Indeterminate Beams and Plane Frames
7.7: Example - Frame Example 2
Determine all of the reactions for the following frame:
Figure 7.7-1: Frame Example 2
This example is the same as Example 1 of the previous section. This time we will choose a moment redundant, rather than a force redundant.
1: Statical determinacy
The frame is 1 degree statically indeterminate.
2: Identify redundants
Figure 7.7-2: Free body of real structure
Choose the moment at a ($M_a$) as the redundant.
3: Analyze the primary structure
Figure 7.7-3: Determinate structure with real loads
4: Apply unit values of the redundants
Figure 7.7-4: Determinate structure with unit redundants
5: Compute Displacements in the primary structure
6: Compute flexibilty coefficients
7: Write compatibilty equations
The real vertical displacement at point c is zero, therefore:
\[\begin{split} 0 &= \theta_{10} + M_a f_{11}\\ &= -\frac{10 P L^2}{E I_0} + Ma \times \frac{9 L}{2 E I_0} \end{split}\]8: Solve for the redundant
\[M_a = \frac{20}{9} P L\]9: Other reactions by superposition
\[\begin{split} V_c &= V_{c0} + M_a v_{ac} \\ &= \frac{4P}{3} + \frac{20 P L}{9} \times -\frac{1}{3L} \\ &= \frac{16}{27} P\\ H_a &= H_{a0} + M_a h_{a1} \\ &= P + \frac{20 PL}{9} \times 0 \\ &= P\\ V_a &= V_{a0} + M_a v_{a1} \\ &= -frac{4P}{3} + \frac{20 P L}{9} \times \frac{1}{3L} \\ &= -\frac{16}{27} P\\ \end{split}\]10: Summary
Figure 7.7-5: Summary of Frame Example 2